3.465 \(\int \frac{\sqrt{x}}{(a+b x)^3} \, dx\)

Optimal. Leaf size=73 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{4 a^{3/2} b^{3/2}}+\frac{\sqrt{x}}{4 a b (a+b x)}-\frac{\sqrt{x}}{2 b (a+b x)^2} \]

[Out]

-Sqrt[x]/(2*b*(a + b*x)^2) + Sqrt[x]/(4*a*b*(a + b*x)) + ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]]/(4*a^(3/2)*b^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0194928, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {47, 51, 63, 205} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{4 a^{3/2} b^{3/2}}+\frac{\sqrt{x}}{4 a b (a+b x)}-\frac{\sqrt{x}}{2 b (a+b x)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/(a + b*x)^3,x]

[Out]

-Sqrt[x]/(2*b*(a + b*x)^2) + Sqrt[x]/(4*a*b*(a + b*x)) + ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]]/(4*a^(3/2)*b^(3/2))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{x}}{(a+b x)^3} \, dx &=-\frac{\sqrt{x}}{2 b (a+b x)^2}+\frac{\int \frac{1}{\sqrt{x} (a+b x)^2} \, dx}{4 b}\\ &=-\frac{\sqrt{x}}{2 b (a+b x)^2}+\frac{\sqrt{x}}{4 a b (a+b x)}+\frac{\int \frac{1}{\sqrt{x} (a+b x)} \, dx}{8 a b}\\ &=-\frac{\sqrt{x}}{2 b (a+b x)^2}+\frac{\sqrt{x}}{4 a b (a+b x)}+\frac{\operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\sqrt{x}\right )}{4 a b}\\ &=-\frac{\sqrt{x}}{2 b (a+b x)^2}+\frac{\sqrt{x}}{4 a b (a+b x)}+\frac{\tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{4 a^{3/2} b^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.0052862, size = 27, normalized size = 0.37 \[ \frac{2 x^{3/2} \, _2F_1\left (\frac{3}{2},3;\frac{5}{2};-\frac{b x}{a}\right )}{3 a^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/(a + b*x)^3,x]

[Out]

(2*x^(3/2)*Hypergeometric2F1[3/2, 3, 5/2, -((b*x)/a)])/(3*a^3)

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 52, normalized size = 0.7 \begin{align*} 2\,{\frac{1}{ \left ( bx+a \right ) ^{2}} \left ( 1/8\,{\frac{{x}^{3/2}}{a}}-1/8\,{\frac{\sqrt{x}}{b}} \right ) }+{\frac{1}{4\,ab}\arctan \left ({b\sqrt{x}{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(b*x+a)^3,x)

[Out]

2*(1/8/a*x^(3/2)-1/8*x^(1/2)/b)/(b*x+a)^2+1/4/b/a/(a*b)^(1/2)*arctan(b*x^(1/2)/(a*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38871, size = 412, normalized size = 5.64 \begin{align*} \left [-\frac{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt{-a b} \log \left (\frac{b x - a - 2 \, \sqrt{-a b} \sqrt{x}}{b x + a}\right ) - 2 \,{\left (a b^{2} x - a^{2} b\right )} \sqrt{x}}{8 \,{\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}, -\frac{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt{a b} \arctan \left (\frac{\sqrt{a b}}{b \sqrt{x}}\right ) -{\left (a b^{2} x - a^{2} b\right )} \sqrt{x}}{4 \,{\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x+a)^3,x, algorithm="fricas")

[Out]

[-1/8*((b^2*x^2 + 2*a*b*x + a^2)*sqrt(-a*b)*log((b*x - a - 2*sqrt(-a*b)*sqrt(x))/(b*x + a)) - 2*(a*b^2*x - a^2
*b)*sqrt(x))/(a^2*b^4*x^2 + 2*a^3*b^3*x + a^4*b^2), -1/4*((b^2*x^2 + 2*a*b*x + a^2)*sqrt(a*b)*arctan(sqrt(a*b)
/(b*sqrt(x))) - (a*b^2*x - a^2*b)*sqrt(x))/(a^2*b^4*x^2 + 2*a^3*b^3*x + a^4*b^2)]

________________________________________________________________________________________

Sympy [A]  time = 35.0942, size = 721, normalized size = 9.88 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(b*x+a)**3,x)

[Out]

Piecewise((zoo/x**(3/2), Eq(a, 0) & Eq(b, 0)), (-2/(3*b**3*x**(3/2)), Eq(a, 0)), (2*x**(3/2)/(3*a**3), Eq(b, 0
)), (-2*I*a**(3/2)*b*sqrt(x)*sqrt(1/b)/(8*I*a**(7/2)*b**2*sqrt(1/b) + 16*I*a**(5/2)*b**3*x*sqrt(1/b) + 8*I*a**
(3/2)*b**4*x**2*sqrt(1/b)) + 2*I*sqrt(a)*b**2*x**(3/2)*sqrt(1/b)/(8*I*a**(7/2)*b**2*sqrt(1/b) + 16*I*a**(5/2)*
b**3*x*sqrt(1/b) + 8*I*a**(3/2)*b**4*x**2*sqrt(1/b)) + a**2*log(-I*sqrt(a)*sqrt(1/b) + sqrt(x))/(8*I*a**(7/2)*
b**2*sqrt(1/b) + 16*I*a**(5/2)*b**3*x*sqrt(1/b) + 8*I*a**(3/2)*b**4*x**2*sqrt(1/b)) - a**2*log(I*sqrt(a)*sqrt(
1/b) + sqrt(x))/(8*I*a**(7/2)*b**2*sqrt(1/b) + 16*I*a**(5/2)*b**3*x*sqrt(1/b) + 8*I*a**(3/2)*b**4*x**2*sqrt(1/
b)) + 2*a*b*x*log(-I*sqrt(a)*sqrt(1/b) + sqrt(x))/(8*I*a**(7/2)*b**2*sqrt(1/b) + 16*I*a**(5/2)*b**3*x*sqrt(1/b
) + 8*I*a**(3/2)*b**4*x**2*sqrt(1/b)) - 2*a*b*x*log(I*sqrt(a)*sqrt(1/b) + sqrt(x))/(8*I*a**(7/2)*b**2*sqrt(1/b
) + 16*I*a**(5/2)*b**3*x*sqrt(1/b) + 8*I*a**(3/2)*b**4*x**2*sqrt(1/b)) + b**2*x**2*log(-I*sqrt(a)*sqrt(1/b) +
sqrt(x))/(8*I*a**(7/2)*b**2*sqrt(1/b) + 16*I*a**(5/2)*b**3*x*sqrt(1/b) + 8*I*a**(3/2)*b**4*x**2*sqrt(1/b)) - b
**2*x**2*log(I*sqrt(a)*sqrt(1/b) + sqrt(x))/(8*I*a**(7/2)*b**2*sqrt(1/b) + 16*I*a**(5/2)*b**3*x*sqrt(1/b) + 8*
I*a**(3/2)*b**4*x**2*sqrt(1/b)), True))

________________________________________________________________________________________

Giac [A]  time = 1.21856, size = 70, normalized size = 0.96 \begin{align*} \frac{\arctan \left (\frac{b \sqrt{x}}{\sqrt{a b}}\right )}{4 \, \sqrt{a b} a b} + \frac{b x^{\frac{3}{2}} - a \sqrt{x}}{4 \,{\left (b x + a\right )}^{2} a b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x+a)^3,x, algorithm="giac")

[Out]

1/4*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*a*b) + 1/4*(b*x^(3/2) - a*sqrt(x))/((b*x + a)^2*a*b)